(77) A. Kurono, H. Hamasaki, T. Nakano, H. Ikeda, H. Sugime, Y. Inoue*,
"Crystallinity and CNT-CNT interface effects on thermal and electrical conductivity in ultra-long CNT bundles and yarns,"
J. Phys. Chem. C accepted.
J. Phys. Chem. C accepted.
(76) Y. Serizawa, S. Naya, H. Sugime, T. Soejima*,
"Low-temperature growth of AgBr nanoplates via concerted etching and redeposition processes,"
ChemNanoMat accepted.
DOI:10.1002/cnma.202500097
ChemNanoMat accepted.
DOI:10.1002/cnma.202500097
(75) S. Naya, M. Nagamitsu, H. Sugime, T. Soejima, H. Tada*,
"Metal oxide plating for maximizing the performance in ruthenium(IV) oxide-catalyzed electrochemical oxygen evolution reaction,"
Nanoscale 17, 888-895 (2025).
DOI:10.1039/D4NR03678F
Nanoscale 17, 888-895 (2025).
DOI:10.1039/D4NR03678F
(74) H. Morotomi, Y. Matsunaga, L. Liu, H. Sugime, J. Hirotani*,
"Enhanced water adsorption properties of Ti3C2Tx MXene/bentonite thin films for highly sensitive humidity sensing,"
AIP Adv. 14, 125123 (2024).
DOI:10.1063/5.0245810
AIP Adv. 14, 125123 (2024).
DOI:10.1063/5.0245810
(73) S. Naya, Y. Morita, H. Sugime, T. Soejima, M. Fujishima, H. Tada*,
"Efficient plasmonic water splitting by heteroepitaxial junction-induced faceting of gold nanoparticles on anatase titanium(IV) oxide nanoplate array electrode,"
Nanoscale 16, 13435-13444 (2024).
DOI:10.1039/D4NR01013B
Nanoscale 16, 13435-13444 (2024).
DOI:10.1039/D4NR01013B
(72) H. Tada*, T. Masuda, S. Naya, H. Sugime, S. Tanaka, M. Fujishima,
"Efficient photon-to-current and hydrogen conversion by decomposition of formic acid on TiO2 photoanode,"
J. Phys. Chem. C 128 (22), 9016-9023 (2024).
DOI:10.1021/acs.jpcc.4c01613
J. Phys. Chem. C 128 (22), 9016-9023 (2024).
DOI:10.1021/acs.jpcc.4c01613
(71) Y. Maekawa, S. Sakura, Y. Furutani, R. Fujihara, H. Sugime*, T. Ohtsuki*, M. Kitamatsu*,
"Pyrene-modified cyclic peptides detect Cu2+ ions by fluorescence in water,"
Processes 12 (4), 746 (2024).
DOI:10.3390/pr12040746
Processes 12 (4), 746 (2024).
DOI:10.3390/pr12040746
(70) Y. Yan, H. Tada*, H. Sugime, T. Soejima*,
"Formation mechanism of radial mesocrystals consisting of ZnO nanowires,"
CrystEngComm 25, 5796-5801 (2023).
DOI:10.1039/D3CE00785E
CrystEngComm 25, 5796-5801 (2023).
DOI:10.1039/D3CE00785E
(69) H. Tanaka, T. Goto, K. Hamada, K. Ohashi, T. Osawa, H. Sugime, and S. Noda*,
"Safe and damage-less dry-purification of carbon nanotubes using FeCl3 vapor,"
Carbon 212, 118171 (2023).
DOI:10.1016/j.carbon.2023.118171
Carbon 212, 118171 (2023).
DOI:10.1016/j.carbon.2023.118171
(68) H. Tada*, S. Naya, H. Sugime,
"Near infrared light-to-heat conversion for liquid-phase oxidation reactions by antimony-doped tin oxide nanocrystals,"
ChemPhysChem 24 (7), e202200696 (2023).
DOI:10.1002/cphc.202200696
ChemPhysChem 24 (7), e202200696 (2023).
DOI:10.1002/cphc.202200696
(67) K. Tabata, Y. Kono, R. Goto, Y. Abe, T. Nakano, H. Sugime, and Y. Inoue*,
"Catalyst dynamics in the growth of high-density CNT forests; Fine control of the mass density of forest by colloidal catalyst nanoparticles,"
J. Phys. Chem. C 126 (48), 20448-20455 (2022).
DOI:10.1021/acs.jpcc.2c05454
J. Phys. Chem. C 126 (48), 20448-20455 (2022).
DOI:10.1021/acs.jpcc.2c05454
(66) S. Munakata, S. Kobayashi, H. Sugime, S. Konishi, J. Shiomi, and S. Noda*,
"Ag nanoparticle-based aerogel-like films for interfacial thermal management,"
ACS Appl. Nano Mater. 5 (10), 15755-15761 (2022).
DOI:10.1021/acsanm.2c03903
ACS Appl. Nano Mater. 5 (10), 15755-15761 (2022).
DOI:10.1021/acsanm.2c03903
(65) H. Inoue, S. Naya, A. Akita, H. Sugime, and H. Tada*,
"Photothermal catalytic oxidation of cinnamyl alcohol with hydrogen peroxide by gold nanoparticle/antimony-doped tin oxide nanocrystals,"
Chem. Eur. J. 28 (46), e202201653 (2022).
DOI:10.1002/chem.202201653
Chem. Eur. J. 28 (46), e202201653 (2022).
DOI:10.1002/chem.202201653
(64) H. Suzuki, J. Yamauchi, S. Naya, H. Sugime, and H. Tada*,
"Noble metal-free inorganic photocatalyst consisting of antimony-doped tin oxide nanorod and titanium oxide for two-electron oxygen reduction reaction,"
ChemPhysChem 23 (15), e202200029 (2022).
DOI:10.1002/cphc.202200029
ChemPhysChem 23 (15), e202200029 (2022).
DOI:10.1002/cphc.202200029
(63) N. Akagi, K. Hori, H. Sugime, S. Noda, and N. Hanada*,
"Systematic investigation of anode catalysts for liquid ammonia electrolysis,"
J. Catal. 406, 222-230 (2022).
DOI:10.1016/j.jcat.2022.01.005
J. Catal. 406, 222-230 (2022).
DOI:10.1016/j.jcat.2022.01.005
(62) A. Akita, R. Kojima, H. Sugime, and H. Tada*,
"Switching of electron transport direction from the long axis to short axis in radial SnO2(head)-rutile TiO2 nanorod(tail) heteromesocrystal photocatalyst,"
J. Phys. Chem. Lett. 12, 11717-11722 (2021).
DOI:10.1021/acs.jpclett.1c03360
J. Phys. Chem. Lett. 12, 11717-11722 (2021).
DOI:10.1021/acs.jpclett.1c03360
(61) K. Kajiwara, H. Sugime, S. Noda, and N. Hanada*,
"Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube,"
J. Alloys Compd. 893, 162206 (2022).
DOI:10.1016/j.jallcom.2021.162206
J. Alloys Compd. 893, 162206 (2022).
DOI:10.1016/j.jallcom.2021.162206
(60) S. Anantharaj*, H. Sugime, and S. Noda*,
"Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?"
J. Electroanal. Chem. 903, 115842 (2021).
DOI:10.1016/j.jelechem.2021.115842
J. Electroanal. Chem. 903, 115842 (2021).
DOI:10.1016/j.jelechem.2021.115842
(59) K. Kurokawa, H. Sugime, S. Naya, and H. Tada*,
"Thermocatalytic activity of gold truncated nanopyramids on strontium titanate nanocube,"
Chem. Lett. 50 (12), 1997-2000 (2021).
DOI:10.1246/cl.210544
Chem. Lett. 50 (12), 1997-2000 (2021).
DOI:10.1246/cl.210544
(58) M. Li*, K. Yasui, H. Sugime, and S. Noda*,
"Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlOx catalyst annealed without CO2,"
Carbon 185, 264-271 (2021).
DOI:10.1016/j.carbon.2021.09.031
Carbon 185, 264-271 (2021).
DOI:10.1016/j.carbon.2021.09.031
(57) X. Huang, E. Hara, H. Sugime, and S. Noda*,
"Carbon nanotube/silicon heterojunction solar cell with an active area of 4 cm2 realized using a multifunctional molybdenum oxide layer,"
Carbon 185, 215-223 (2021).
DOI:10.1016/j.carbon.2021.08.056
Carbon 185, 215-223 (2021).
DOI:10.1016/j.carbon.2021.08.056
(56) M. Li*, S. Hachiya, Z. Chen, T. Osawa, H. Sugime, and S. Noda*,
"Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide,"
Carbon 182, 28-31 (2021).
DOI:10.1016/j.carbon.2021.05.035
Carbon 182, 28-31 (2021).
DOI:10.1016/j.carbon.2021.05.035
(55) K. Yoshida, K. Kajiwara, H. Sugime, S. Noda*, and N. Hanada*,
"Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH2 sheet,"
Chem. Eng. J. 421, 129648 (2021).
DOI:10.1016/j.cej.2021.129648
Chem. Eng. J. 421, 129648 (2021).
DOI:10.1016/j.cej.2021.129648
(54) S. Anantharaj*, H. Sugime, S. Yamaoka, and S. Noda*,
"Pushing the limits of rapid anodic growth of CuO/Cu(OH)2 nanoneedles on Cu for methanol oxidation reaction: Anodization pH is the game changer,"
ACS Appl. Energy Mater. 4 (1), 899-912 (2021).
DOI:10.1021/acsaem.0c02822
ACS Appl. Energy Mater. 4 (1), 899-912 (2021).
DOI:10.1021/acsaem.0c02822
(53) R. Xie, H. Sugime, and S. Noda*,
"High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping,"
Carbon 175, 519-524 (2021).
DOI:10.1016/j.carbon.2020.12.0562
Carbon 175, 519-524 (2021).
DOI:10.1016/j.carbon.2020.12.0562
(52) X. Huang, R. Xie, H. Sugime, and S. Noda*,
"Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoOx,"
Appl. Surf. Sci. 542, 148682 (2021).
DOI:10.1016/j.apsusc.2020.148682
Appl. Surf. Sci. 542, 148682 (2021).
DOI:10.1016/j.apsusc.2020.148682
(51) S. Anantharaj*, H. Sugime, and S. Noda*,
"Chemical leaching of inactive Cr and subsequent electrochemical resurfacing of catalytically active sites in stainless steel for high-rate alkaline hydrogen evolution reaction,"
ACS Appl. Energy Mater. 3 (12), 12596-12606 (2020).
DOI:10.1021/acsaem.0c02505
ACS Appl. Energy Mater. 3 (12), 12596-12606 (2020).
DOI:10.1021/acsaem.0c02505
(50) H. Sugime*, T. Sato, R. Nakagawa, T. Hayashi, Y. Inoue, and S. Noda,
"Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources,"
Carbon 172, 772-780 (2021).
DOI:10.1016/j.carbon.2020.10.066
Press release by Waseda University (English, Japanese)
Carbon 172, 772-780 (2021).
DOI:10.1016/j.carbon.2020.10.066
Press release by Waseda University (English, Japanese)
(49) S. Anantharaj*, H. Sugime, and S. Noda*,
"Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium,"
Chem. Eng. J. 408, 127275 (2020).
DOI:10.1016/j.cej.2020.127275
Chem. Eng. J. 408, 127275 (2020).
DOI:10.1016/j.cej.2020.127275
(48) S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, and S. Noda*,
"Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization,"
Electrochim. Acta 364, 137170 (2020).
DOI:10.1016/j.electacta.2020.137170
Electrochim. Acta 364, 137170 (2020).
DOI:10.1016/j.electacta.2020.137170
(47) M. Li*, R. Maeda, T. Osawa, H. Sugime, and S. Noda*,
"Facile catalyst deposition using mist for fluidized-bed production of sub-millimeter-long carbon nanotubes,"
Carbon 167, 256-263 (2020).
DOI:10.1016/j.carbon.2020.06.018
Carbon 167, 256-263 (2020).
DOI:10.1016/j.carbon.2020.06.018
(46) S. Anantharaj*, H. Sugime, and S. Noda*,
"Ultrafast Growth of Cu(OH)2-CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis,"
ACS Appl. Mater. Interfaces 12, 27327-27338 (2020).
DOI:10.1021/acsami.0c08979
ACS Appl. Mater. Interfaces 12, 27327-27338 (2020).
DOI:10.1021/acsami.0c08979
(45) S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, and S. Noda*,
"Achieving increased electrochemical accessibility and lowered OER activation energy for Co2+ sites with a simple anion pre-oxidation,"
J. Phys. Chem. C 124, 9673-9684 (2020).
DOI:10.1021/acs.jpcc.0c00178
J. Phys. Chem. C 124, 9673-9684 (2020).
DOI:10.1021/acs.jpcc.0c00178
(44) R. Xie, H. Sugime, and S. Noda*,
"Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films,"
Carbon 164, 150-156 (2020).
DOI:10.1016/j.carbon.2020.03.063
Carbon 164, 150-156 (2020).
DOI:10.1016/j.carbon.2020.03.063
(43) N. Hanada*, Y. Kohase, K. Hori, H. Sugime, and S. Noda,
"Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode,"
Electrochim. Acta 341, 136027 (2020).
DOI:10.1016/j.electacta.2020.136027
Electrochim. Acta 341, 136027 (2020).
DOI:10.1016/j.electacta.2020.136027
(42) H. Sugime*, T. Sato, R. Nakagawa, C. Cepek, and S. Noda,
"Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes,"
ACS Nano 13, 13208-13216 (2019).
DOI:10.1021/acsnano.9b06181
Press release by Waseda University (in Japanese)

Single-wall carbon nanotube forest by iron/gadolinium/aluminum catalyst
ACS Nano 13, 13208-13216 (2019).
DOI:10.1021/acsnano.9b06181
Press release by Waseda University (in Japanese)

Single-wall carbon nanotube forest by iron/gadolinium/aluminum catalyst
(41) R. Xie, N. Ishijima, H. Sugime, and S. Noda*,
"Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process,"
Sci. Rep. 9, 12051 (2019).
DOI:10.1038/s41598-019-48504-7
Sci. Rep. 9, 12051 (2019).
DOI:10.1038/s41598-019-48504-7
(40) S. Akiba, M. Kosaka, K. Ohashi, K. Hasegawa, H. Sugime, and S. Noda*,
"Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates,"
Thin Solid Films 675, 136-142 (2019).
DOI:10.1016/j.tsf.2019.02.035
Thin Solid Films 675, 136-142 (2019).
DOI:10.1016/j.tsf.2019.02.035
(39) Y. Nagai, H. Sugime, and S. Noda*,
"1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions,"
Chem. Eng. Sci. 201, 319-324 (2019).
DOI:10.1016/j.ces.2019.02.038
Chem. Eng. Sci. 201, 319-324 (2019).
DOI:10.1016/j.ces.2019.02.038
(38) H. Sugime*, T. Ushiyama, K. Nishimura, Y. Ohno, and S. Noda,
"An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors,"
Analyst 143, 3635-3642 (2018).
DOI:10.1039/C8AN00528A

Interdigitated electrode with dense carbon nanotube forests on conductive supports
Analyst 143, 3635-3642 (2018).
DOI:10.1039/C8AN00528A

Interdigitated electrode with dense carbon nanotube forests on conductive supports
(37) S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda*,
"Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes,"
Carbon 138, 1-7 (2018).
DOI:10.1016/j.carbon.2018.05.060
Carbon 138, 1-7 (2018).
DOI:10.1016/j.carbon.2018.05.060
(36) T. Sato, H. Sugime, and S. Noda*,
"CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis,"
Carbon 136, 143-149 (2018).
DOI:10.1016/j.carbon.2018.04.060
Carbon 136, 143-149 (2018).
DOI:10.1016/j.carbon.2018.04.060
(35) S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime, A. Ota, H. Oshima, and S. Noda*,
"Millimeter-tall carbon nanotube arrays grown on aluminum substrates,"
Carbon 130, 834-842 (2018).
DOI:10.1016/j.carbon.2018.01.075
Carbon 130, 834-842 (2018).
DOI:10.1016/j.carbon.2018.01.075
(34) G. Rughoobur, H. Sugime, M. DeMiguel-Ramos, T. Mirea, S. Zheng, J. Robertson, E. Iborra, and A. Flewitt*,
"Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing,"
Sensor. Actuat. B-Chem 261, 398-407 (2018).
DOI:10.1016/j.snb.2018.01.067
Sensor. Actuat. B-Chem 261, 398-407 (2018).
DOI:10.1016/j.snb.2018.01.067
(33) H. Sugime*, L. D'Arsié, S. Esconjauregui, G. Zhong, X. Wu, E. Hildebrandt, H. Sezen, M. Amati, L. Gregoratti, R.S. Weatherup, and J. Robertson,
"Low temperature growth of fully covered single-layer graphene using CoCu catalyst,"
Nanoscale 9 (38), 14467-14475 (2017).
DOI:10.1039/C7NR02553J

Growth of fully covered single-layer graphene using CoCu catalyst (750 °C, 3 min)
Nanoscale 9 (38), 14467-14475 (2017).
DOI:10.1039/C7NR02553J

Growth of fully covered single-layer graphene using CoCu catalyst (750 °C, 3 min)
(32) S. Caneva, M.-B. Martin, L. D'Arsié, A.I. Aria, H. Sezen, M. Amati, L. Gregoratti, H. Sugime, S. Esconjauregui, J. Robertson, S. Hofmann, and R.S. Weatherup*,
"From growth surface to device interface: preserving metallic Fe under monolayer hexagonal boron nitride,"
ACS Appl. Mater. Interfaces 9 (35), 29973-29981 (2017).
DOI:10.1021/acsami.7b08717
ACS Appl. Mater. Interfaces 9 (35), 29973-29981 (2017).
DOI:10.1021/acsami.7b08717
(31) Y. Nagai, A. Okawa, T. Minamide, K. Hasegawa, H. Sugime, and S. Noda*,
"Tens-second epitaxy of Cu on repeatedly used sapphire for practical production of high-quality graphene,"
ACS Omega 2 (7), 3354-3362 (2017).
DOI:10.1021/acsomega.7b00509
ACS Omega 2 (7), 3354-3362 (2017).
DOI:10.1021/acsomega.7b00509
(30) H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R.M. Laine, and S. Noda*,
"Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale,"
Carbon 114, 31-38 (2017).
DOI:10.1016/j.carbon.2016.11.075
Carbon 114, 31-38 (2017).
DOI:10.1016/j.carbon.2016.11.075
(29) L. D'Arsié*, S. Esconjauregui, R.S. Weatherup, X. Wu, W.E. Arter, H. Sugime, C. Cepek, and J. Robertson,
"Stable and efficient p-type doping of graphene by nitric acid,"
RSC Adv. 6 (114), 113185-113192 (2016).
DOI:10.1039/C6RA23727D
RSC Adv. 6 (114), 113185-113192 (2016).
DOI:10.1039/C6RA23727D
(28) X. Wu, G. Zhong*, L. D'Arsié, H. Sugime, S. Esconjauregui, A.W. Robertson, and J. Robertson,
"Growth of continuous monolayer graphene with millimeter-sized domains using industrially safe conditions,"
Sci. Rep. 6, 21152 (2016).
DOI:10.1038/srep21152
Sci. Rep. 6, 21152 (2016).
DOI:10.1038/srep21152
(27) G. Zhong*, J. Yang, H. Sugime, R. Rao, J. Zhao, D. Liu, A. Harutyunyan, and J. Robertson,
"Growth of high quality, high density single-walled carbon nanotube forests on copper foils,"
Carbon 98, 624-632 (2016).
DOI:10.1016/j.carbon.2015.11.047
Carbon 98, 624-632 (2016).
DOI:10.1016/j.carbon.2015.11.047
(26) S. Esconjauregui*, T. Makaryan, T. Mirea, M. DeMiguel-Ramos, J. Olivares, Y. Guo, H. Sugime, L. D'Arsié, J. Yang, S. Bhardwaj, C. Cepek, J. Robertson, and E. Iborra,
"Carbon nanotube forests as top electrode in electroacoustic resonators,"
Appl. Phys. Lett. 107 (8), 133106 (2015).
DOI:10.1063/1.4932197
Appl. Phys. Lett. 107 (8), 133106 (2015).
DOI:10.1063/1.4932197
(25) S. Esconjauregui*, L. D'Arsié, Y. Guo, J. Yang, H. Sugime, S. Caneva, C. Cepek, and J. Robertson,
"Efficient transfer doping of carbon nanotube forests by MoO3,"
ACS Nano 9 (10), 10422-10430 (2015).
DOI:10.1021/acsnano.5b04644
ACS Nano 9 (10), 10422-10430 (2015).
DOI:10.1021/acsnano.5b04644
(24) H. Sugime*, S. Esconjauregui, L. D'Arsié, J. Yang, A.W. Robertson, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson,
"Low temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports,"
ACS Appl. Mater. Interfaces 7 (30), 16819-16827 (2015).
DOI:10.1021/acsami.5b04846

A novel catalyst design with a partial barrier layer for the growth of dense CNT forests
ACS Appl. Mater. Interfaces 7 (30), 16819-16827 (2015).
DOI:10.1021/acsami.5b04846

A novel catalyst design with a partial barrier layer for the growth of dense CNT forests
(23) J. Yang, S. Esconjauregui*, A.W. Robertson, Y. Guo, T. Hallam, H. Sugime, G. Zhong, G.S. Duesberg, and J. Robertson,
"Growth of high-density carbon nanotube forests on conductive TiSiN supports,"
Appl. Phys. Lett. 106 (8), 083108 (2015).
DOI:10.1063/1.4913762
Appl. Phys. Lett. 106 (8), 083108 (2015).
DOI:10.1063/1.4913762
(22) J. Yang, S. Esconjauregui*, H. Sugime, T. Makaryan, T. Hallam, G.S. Duesberg, and J. Robertson,
"Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports,"
Phys. Status Solidi B 251 (12), 2389-2393 (2014).
DOI:10.1002/pssb.201451162
Phys. Status Solidi B 251 (12), 2389-2393 (2014).
DOI:10.1002/pssb.201451162
(21) H. Sugime*, S. Esconjauregui, L. D'Arsié, J. Yang, T. Makaryan, and J. Robertson,
"Growth kinetics and growth mechanism of ultra-high mass density carbon nanotube forests on conductive Ti/Cu supports,"
ACS Appl. Mater. Interfaces 6 (17), 15440-15447 (2014).
DOI:10.1021/am504048h

A schematic of growth mechanism of ultra-high mass density carbon nanotube forests and the smallest patterning of the carbon nanotube forests grown at 450 °C on conductive supports
ACS Appl. Mater. Interfaces 6 (17), 15440-15447 (2014).
DOI:10.1021/am504048h

A schematic of growth mechanism of ultra-high mass density carbon nanotube forests and the smallest patterning of the carbon nanotube forests grown at 450 °C on conductive supports
(20) J. Yang, S. Esconjauregui*, R. Xie, H. Sugime, T. Makaryan, L. D'Arsié, D.L.G. Arellano, S. Bhardwaj, C. Cepek, and J. Robertson,
"Effect of oxygen plasma alumina treatment on the growth of carbon nanotube forests,"
J. Phys. Chem. C 118 (32), 18683-18692 (2014).
DOI:10.1021/jp5022196
J. Phys. Chem. C 118 (32), 18683-18692 (2014).
DOI:10.1021/jp5022196
(19) T. Makaryan*, S. Esconjauregui, M. Goncalves, J. Yang, H. Sugime, D. Nille, P. Renganathan, P. Goldberg, and J. Robertson,
"Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,"
ACS Appl. Mater. Interfaces 6 (8), 5344-5349 (2014).
DOI:10.1021/am501863g
ACS Appl. Mater. Interfaces 6 (8), 5344-5349 (2014).
DOI:10.1021/am501863g
(18) F.B. Michaelis, R.S. Weatherup, B.C. Bayer, M.C.D. Bock, H. Sugime, S. Caneva, J. Robertson, J.J. Baumberg, and S. Hofmann*,
"Co-catalytic absorption layers for controlled laser-induced chemical vapor deposition of carbon nanotubes,"
ACS Appl. Mater. Interfaces 6 (6), 4025-4032 (2014).
DOI:10.1021/am405460r
ACS Appl. Mater. Interfaces 6 (6), 4025-4032 (2014).
DOI:10.1021/am405460r
(17) S. Esconjauregui*, S. Bhardwaj, J. Yang, C. Castellarin-Cudia, R. Xie, L. D'Arsié, T. Makaryan, H. Sugime, S.E. Fernandez, C. Cepek, and J. Robertson,
"Carbon nanotube growth on conductors: influence of the support structure and catalyst thickness,"
Carbon 73, 13-24 (2014).
DOI:10.1016/j.carbon.2014.02.026
Carbon 73, 13-24 (2014).
DOI:10.1016/j.carbon.2014.02.026
(16) H. Tornatzky, D. Hardeman, S. Esconjauregui*, L. D'Arsié, R. Xie, H. Sugime, J. Yang, T. Makaryan, C. Thomsen, and J. Robertson,
"Evaluation of bimetallic catalysts for the growth of carbon nanotube forests,"
Phys. Status Solidi B 250 (12), 2605-2610 (2013).
DOI:10.1002/pssb.201300143
Phys. Status Solidi B 250 (12), 2605-2610 (2013).
DOI:10.1002/pssb.201300143
(15) H. Sugime*, S. Esconjauregui, J. Yang, L. D'Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson,
"Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports,"
Appl. Phys. Lett. 103 (7), 073116 (2013).
DOI:10.1063/1.4818619
Press release by American Institute of Physics

Carbon nanotube forest grown at 450 °C on conductive supports with the highest mass density (1.6 g cm-3)
Appl. Phys. Lett. 103 (7), 073116 (2013).
DOI:10.1063/1.4818619
Press release by American Institute of Physics

Carbon nanotube forest grown at 450 °C on conductive supports with the highest mass density (1.6 g cm-3)
(14) H. Sugime and S. Noda*,
"Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol,"
Carbon 50 (8), 2953-2960 (2012).
DOI:10.1016/j.carbon.2012.02.065
Carbon 50 (8), 2953-2960 (2012).
DOI:10.1016/j.carbon.2012.02.065
(13) D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays,"
Carbon 50 (4), 1538-1545 (2012).
DOI:10.1016/j.carbon.2011.11.032
Carbon 50 (4), 1538-1545 (2012).
DOI:10.1016/j.carbon.2011.11.032
(12) Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Tailoring the morphology of carbon nanotube assemblies using microgradients in the catalyst thickness,"
Jpn. J. Appl. Phys. 50 (9), 095101-1-7 (2011).
DOI:10.1143/JJAP.50.095101
Jpn. J. Appl. Phys. 50 (9), 095101-1-7 (2011).
DOI:10.1143/JJAP.50.095101
(11) D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor,"
Carbon 49 (6), 1972-1979 (2011).
DOI:10.1016/j.carbon.2011.01.022
Carbon 49 (6), 1972-1979 (2011).
DOI:10.1016/j.carbon.2011.01.022
(10) H. Sugime and S. Noda*,
"Millimeter-tall single-walled carbon nanotube forests growing from ethanol,"
Carbon 48 (8), 2203-2211 (2010).
DOI:10.1016/j.carbon.2010.02.024
Carbon 48 (8), 2203-2211 (2010).
DOI:10.1016/j.carbon.2010.02.024
(9) S. Noda*, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori,
"A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates,"
Jpn. J. Appl. Phys. 49 (2), 02BA02 (2010).
DOI:10.1143/JJAP.49.02BA02
Jpn. J. Appl. Phys. 49 (2), 02BA02 (2010).
DOI:10.1143/JJAP.49.02BA02
(8) Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Efficient field emission from triode-type 1D arrays of carbon nanotubes,"
Nanotechnology 20 (47), 475707-1-7 (2009).
DOI:10.1088/0957-4484/20/47/475707
Nanotechnology 20 (47), 475707-1-7 (2009).
DOI:10.1088/0957-4484/20/47/475707
(7) T.W.H. Oates, H. Sugime, and S. Noda*,
"Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films,"
J. Phys. Chem. C 113 (12), 4820-4828 (2009).
DOI:10.1021/jp8097654
J. Phys. Chem. C 113 (12), 4820-4828 (2009).
DOI:10.1021/jp8097654
(6) H. Sugime, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests,"
Carbon 47 (1), 234-241 (2009).
DOI:10.1016/j.carbon.2008.10.001
Carbon 47 (1), 234-241 (2009).
DOI:10.1016/j.carbon.2008.10.001
(5) Y. Shiratori, H. Sugime, and S. Noda*,
"Combinatorial evaluation for field emission properties of carbon nanotubes,"
J. Phys. Chem. C 112 (46), 17974-17982 (2008).
DOI:10.1021/jp807078h
J. Phys. Chem. C 112 (46), 17974-17982 (2008).
DOI:10.1021/jp807078h
(4) K. Hasegawa, S. Noda*, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi,
"Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests,"
J. Nanosci. Nanotechnol. 8 (11), 6123-6128 (2008).
DOI:10.1166/jnn.2008.SW17
J. Nanosci. Nanotechnol. 8 (11), 6123-6128 (2008).
DOI:10.1166/jnn.2008.SW17
(3) Y. Shiratori, K. Furuichi, S. Noda*, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Field emission properties of single-walled carbon nanotubes with a variety of emitter-morphologies,"
Jpn. J. Appl. Phys. 47 (6), 4780-4787 (2008).
DOI:10.1143/JJAP.47.4780
Jpn. J. Appl. Phys. 47 (6), 4780-4787 (2008).
DOI:10.1143/JJAP.47.4780
(2) S. Noda*, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support,"
Jpn. J. Appl. Phys. 46 (17), L399-L401 (2007). (Express Letter)
DOI:10.1143/JJAP.46.L399
Jpn. J. Appl. Phys. 46 (17), L399-L401 (2007). (Express Letter)
DOI:10.1143/JJAP.46.L399
(1) S. Noda*, H. Sugime, T. Osawa, Y. Tsuji, S. Chiashi, Y. Murakami, and S. Maruyama,
"A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes,"
Carbon 44 (8), 1414-1419 (2006).
DOI:10.1016/j.carbon.2005.11.02
Carbon 44 (8), 1414-1419 (2006).
DOI:10.1016/j.carbon.2005.11.02