応用物理化学研究室
杉目グループ
 
 

English

PAGE TOP

論文
(71) Y. Maekawa, S. Sakura, Y. Furutani, R. Fujihara, H. Sugime*, T. Ohtsuki*, M. Kitamatsu*,
"Pyrene-modified cyclic peptides detect Cu2+ ions by fluorescence in water,"
Processes 12 (4), 746 (2024).
DOI:10.3390/pr12040746
(70) Y. Yan, H. Tada*, H. Sugime, T. Soejima*,
"Formation mechanism of radial mesocrystals consisting of ZnO nanowires,"
CrystEngComm 25, 5796-5801 (2023).
DOI:10.1039/D3CE00785E
(69) H. Tanaka, T. Goto, K. Hamada, K. Ohashi, T. Osawa, H. Sugime, and S. Noda*,
"Safe and damage-less dry-purification of carbon nanotubes using FeCl3 vapor,"
Carbon 212, 118171 (2023).
DOI:10.1016/j.carbon.2023.118171
(68) H. Tada*, S. Naya, H. Sugime,
"Near infrared light-to-heat conversion for liquid-phase oxidation reactions by antimony-doped tin oxide nanocrystals,"
ChemPhysChem 24 (7), e202200696 (2023).
DOI:10.1002/cphc.202200696
(67) K. Tabata, Y. Kono, R. Goto, Y. Abe, T. Nakano, H. Sugime, and Y. Inoue*,
"Catalyst dynamics in the growth of high-density CNT forests; Fine control of the mass density of forest by colloidal catalyst nanoparticles,"
J. Phys. Chem. C 126 (48), 20448-20455 (2022).
DOI:10.1021/acs.jpcc.2c05454
(66) S. Munakata, S. Kobayashi, H. Sugime, S. Konishi, J. Shiomi, and S. Noda*,
"Ag nanoparticle-based aerogel-like films for interfacial thermal management,"
ACS Appl. Nano Mater. 5 (10), 15755-15761 (2022).
DOI:10.1021/acsanm.2c03903
(65) H. Inoue, S. Naya, A. Akita, H. Sugime, and H. Tada*,
"Photothermal catalytic oxidation of cinnamyl alcohol with hydrogen peroxide by gold nanoparticle/antimony-doped tin oxide nanocrystals,"
Chem. Eur. J. 28 (46), e202201653 (2022).
DOI:10.1002/chem.202201653
(64) H. Suzuki, J. Yamauchi, S. Naya, H. Sugime, and H. Tada*,
"Noble metal-free inorganic photocatalyst consisting of antimony-doped tin oxide nanorod and titanium oxide for two-electron oxygen reduction reaction,"
ChemPhysChem 23 (15), e202200029 (2022).
DOI:10.1002/cphc.202200029
(63) N. Akagi, K. Hori, H. Sugime, S. Noda, and N. Hanada*,
"Systematic investigation of anode catalysts for liquid ammonia electrolysis,"
J. Catal. 406, 222-230 (2022).
DOI:10.1016/j.jcat.2022.01.005
(62) A. Akita, R. Kojima, H. Sugime, and H. Tada*,
"Switching of electron transport direction from the long axis to short axis in radial SnO2(head)-rutile TiO2 nanorod(tail) heteromesocrystal photocatalyst,"
J. Phys. Chem. Lett. 12, 11717-11722 (2021).
DOI:10.1021/acs.jpclett.1c03360
(61) K. Kajiwara, H. Sugime, S. Noda, and N. Hanada*,
"Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube,"
J. Alloys Compd. 893, 162206 (2022).
DOI:10.1016/j.jallcom.2021.162206
(60) S. Anantharaj*, H. Sugime, and S. Noda*,
"Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?"
J. Electroanal. Chem. 903, 115842 (2021).
DOI:10.1016/j.jelechem.2021.115842
(59) K. Kurokawa, H. Sugime, S. Naya, and H. Tada*,
"Thermocatalytic activity of gold truncated nanopyramids on strontium titanate nanocube,"
Chem. Lett. 50 (12), 1997-2000 (2021).
DOI:10.1246/cl.210544
(58) M. Li*, K. Yasui, H. Sugime, and S. Noda*,
"Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlOx catalyst annealed without CO2,"
Carbon 185, 264-271 (2021).
DOI:10.1016/j.carbon.2021.09.031
(57) X. Huang, E. Hara, H. Sugime, and S. Noda*,
"Carbon nanotube/silicon heterojunction solar cell with an active area of 4 cm2 realized using a multifunctional molybdenum oxide layer,"
Carbon 185, 215-223 (2021).
DOI:10.1016/j.carbon.2021.08.056
(56) M. Li*, S. Hachiya, Z. Chen, T. Osawa, H. Sugime, and S. Noda*,
"Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide,"
Carbon 182, 28-31 (2021).
DOI:10.1016/j.carbon.2021.05.035
(55) K. Yoshida, K. Kajiwara, H. Sugime, S. Noda*, and N. Hanada*,
"Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH2 sheet,"
Chem. Eng. J. 421, 129648 (2021).
DOI:10.1016/j.cej.2021.129648
(54) S. Anantharaj*, H. Sugime, S. Yamaoka, and S. Noda*,
"Pushing the limits of rapid anodic growth of CuO/Cu(OH)2 nanoneedles on Cu for methanol oxidation reaction: Anodization pH is the game changer,"
ACS Appl. Energy Mater. 4 (1), 899-912 (2021).
DOI:10.1021/acsaem.0c02822
(53) R. Xie, H. Sugime, and S. Noda*,
"High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping,"
Carbon 175, 519-524 (2021).
DOI:10.1016/j.carbon.2020.12.0562
(52) X. Huang, R. Xie, H. Sugime, and S. Noda*,
"Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoOx,"
Appl. Surf. Sci. 542, 148682 (2021).
DOI:10.1016/j.apsusc.2020.148682
(51) S. Anantharaj*, H. Sugime, and S. Noda*,
"Chemical leaching of inactive Cr and subsequent electrochemical resurfacing of catalytically active sites in stainless steel for high-rate alkaline hydrogen evolution reaction,"
ACS Appl. Energy Mater. 3 (12), 12596-12606 (2020).
DOI:10.1021/acsaem.0c02505
(50) H. Sugime*, T. Sato, R. Nakagawa, T. Hayashi, Y. Inoue, and S. Noda,
"Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources,"
Carbon 172, 772-780 (2021).
DOI:10.1016/j.carbon.2020.10.066
Press release by Waseda University (English, Japanese)
The longest carbon nanotube forest grown at 750 °C for 32 h
The longest carbon nanotube forest grown at 750 °C for 32 h (growth movie)
(49) S. Anantharaj*, H. Sugime, and S. Noda*,
"Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium,"
Chem. Eng. J. 408, 127275 (2020).
DOI:10.1016/j.cej.2020.127275
(48) S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, and S. Noda*,
"Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization,"
Electrochim. Acta 364, 137170 (2020).
DOI:10.1016/j.electacta.2020.137170
(47) M. Li*, R. Maeda, T. Osawa, H. Sugime, and S. Noda*,
"Facile catalyst deposition using mist for fluidized-bed production of sub-millimeter-long carbon nanotubes,"
Carbon 167, 256-263 (2020).
DOI:10.1016/j.carbon.2020.06.018
(46) S. Anantharaj*, H. Sugime, and S. Noda*,
"Ultrafast Growth of Cu(OH)2-CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis,"
ACS Appl. Mater. Interfaces 12, 27327-27338 (2020).
DOI:10.1021/acsami.0c08979
(45) S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, and S. Noda*,
"Achieving increased electrochemical accessibility and lowered OER activation energy for Co2+ sites with a simple anion pre-oxidation,"
J. Phys. Chem. C 124, 9673-9684 (2020).
DOI:10.1021/acs.jpcc.0c00178
(44) R. Xie, H. Sugime, and S. Noda*,
"Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films,"
Carbon 164, 150-156 (2020).
DOI:10.1016/j.carbon.2020.03.063
(43) N. Hanada*, Y. Kohase, K. Hori, H. Sugime, and S. Noda,
"Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode,"
Electrochim. Acta 341, 136027 (2020).
DOI:10.1016/j.electacta.2020.136027
(42) H. Sugime*, T. Sato, R. Nakagawa, C. Cepek, and S. Noda,
"Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes,"
ACS Nano 13, 13208-13216 (2019).
DOI:10.1021/acsnano.9b06181
Press release by Waseda University (in Japanese)
Single-wall carbon nanotube forest by iron/gadolinium/aluminum catalyst.
Single-wall carbon nanotube forest by iron/gadolinium/aluminum catalyst
(41) R. Xie, N. Ishijima, H. Sugime, and S. Noda*,
"Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process,"
Sci. Rep. 9, 12051 (2019).
DOI:10.1038/s41598-019-48504-7
(40) S. Akiba, M. Kosaka, K. Ohashi, K. Hasegawa, H. Sugime, and S. Noda*,
"Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates,"
Thin Solid Films 675, 136-142 (2019).
DOI:10.1016/j.tsf.2019.02.035
(39) Y. Nagai, H. Sugime, and S. Noda*,
"1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions,"
Chem. Eng. Sci. 201, 319-324 (2019).
DOI:10.1016/j.ces.2019.02.038
(38) H. Sugime*, T. Ushiyama, K. Nishimura, Y. Ohno, and S. Noda,
"An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors,"
Analyst 143, 3635-3642 (2018).
DOI:10.1039/C8AN00528A
Interdigitated electrode with dense carbon nanotube forests on conductive supports.
Interdigitated electrode with dense carbon nanotube forests on conductive supports
(37) S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda*,
"Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes,"
Carbon 138, 1-7 (2018).
DOI:10.1016/j.carbon.2018.05.060
(36) T. Sato, H. Sugime, and S. Noda*,
"CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis,"
Carbon 136, 143-149 (2018).
DOI:10.1016/j.carbon.2018.04.060
(35) S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime, A. Ota, H. Oshima, and S. Noda*,
"Millimeter-tall carbon nanotube arrays grown on aluminum substrates,"
Carbon 130, 834-842 (2018).
DOI:10.1016/j.carbon.2018.01.075
(34) G. Rughoobur, H. Sugime, M. DeMiguel-Ramos, T. Mirea, S. Zheng, J. Robertson, E. Iborra, and A. Flewitt*,
"Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing,"
Sensor. Actuat. B-Chem 261, 398-407 (2018).
DOI:10.1016/j.snb.2018.01.067
(33) H. Sugime*, L. D'Arsié, S. Esconjauregui, G. Zhong, X. Wu, E. Hildebrandt, H. Sezen, M. Amati, L. Gregoratti, R.S. Weatherup, and J. Robertson,
"Low temperature growth of fully covered single-layer graphene using CoCu catalyst,"
Nanoscale 9 (38), 14467-14475 (2017).
DOI:10.1039/C7NR02553J
Low temperature growth of fully covered single-layer graphene using CoCu catalyst
Growth of fully covered single-layer graphene using CoCu catalyst (750 °C, 3 min)
(32) S. Caneva, M.-B. Martin, L. D'Arsié, A.I. Aria, H. Sezen, M. Amati, L. Gregoratti, H. Sugime, S. Esconjauregui, J. Robertson, S. Hofmann, and R.S. Weatherup*,
"From growth surface to device interface: preserving metallic Fe under monolayer hexagonal boron nitride,"
ACS Appl. Mater. Interfaces 9 (35), 29973-29981 (2017).
DOI:10.1021/acsami.7b08717
(31) Y. Nagai, A. Okawa, T. Minamide, K. Hasegawa, H. Sugime, and S. Noda*,
"Tens-second epitaxy of Cu on repeatedly used sapphire for practical production of high-quality graphene,"
ACS Omega 2 (7), 3354-3362 (2017).
DOI:10.1021/acsomega.7b00509
(30) H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R.M. Laine, and S. Noda*,
"Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale,"
Carbon 114, 31-38 (2017).
DOI:10.1016/j.carbon.2016.11.075
(29) L. D'Arsié*, S. Esconjauregui, R.S. Weatherup, X. Wu, W.E. Arter, H. Sugime, C. Cepek, and J. Robertson,
"Stable and efficient p-type doping of graphene by nitric acid,"
RSC Adv. 6 (114), 113185-113192 (2016).
DOI:10.1039/C6RA23727D
(28) X. Wu, G. Zhong*, L. D'Arsié, H. Sugime, S. Esconjauregui, A.W. Robertson, and J. Robertson,
"Growth of continuous monolayer graphene with millimeter-sized domains using industrially safe conditions,"
Sci. Rep. 6, 21152 (2016).
DOI:10.1038/srep21152
(27) G. Zhong*, J. Yang, H. Sugime, R. Rao, J. Zhao, D. Liu, A. Harutyunyan, and J. Robertson,
"Growth of high quality, high density single-walled carbon nanotube forests on copper foils,"
Carbon 98, 624-632 (2016).
DOI:10.1016/j.carbon.2015.11.047
(26) S. Esconjauregui*, T. Makaryan, T. Mirea, M. DeMiguel-Ramos, J. Olivares, Y. Guo, H. Sugime, L. D'Arsié, J. Yang, S. Bhardwaj, C. Cepek, J. Robertson, and E. Iborra,
"Carbon nanotube forests as top electrode in electroacoustic resonators,"
Appl. Phys. Lett. 107 (8), 133106 (2015).
DOI:10.1063/1.4932197
(25) S. Esconjauregui*, L. D'Arsié, Y. Guo, J. Yang, H. Sugime, S. Caneva, C. Cepek, and J. Robertson,
"Efficient transfer doping of carbon nanotube forests by MoO3,"
ACS Nano 9 (10), 10422-10430 (2015).
DOI:10.1021/acsnano.5b04644
(24) H. Sugime*, S. Esconjauregui, L. D'Arsié, J. Yang, A.W. Robertson, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson,
"Low temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports,"
ACS Appl. Mater. Interfaces 7 (30), 16819-16827 (2015).
DOI:10.1021/acsami.5b04846
A novel catalyst design with a partial barrier layer for the growth of dense CNT forests
A novel catalyst design with a partial barrier layer for the growth of dense CNT forests
(23) J. Yang, S. Esconjauregui*, A.W. Robertson, Y. Guo, T. Hallam, H. Sugime, G. Zhong, G.S. Duesberg, and J. Robertson,
"Growth of high-density carbon nanotube forests on conductive TiSiN supports,"
Appl. Phys. Lett. 106 (8), 083108 (2015).
DOI:10.1063/1.4913762
(22) J. Yang, S. Esconjauregui*, H. Sugime, T. Makaryan, T. Hallam, G.S. Duesberg, and J. Robertson,
"Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports,"
Phys. Status Solidi B 251 (12), 2389-2393 (2014).
DOI:10.1002/pssb.201451162
(21) H. Sugime*, S. Esconjauregui, L. D'Arsié, J. Yang, T. Makaryan, and J. Robertson,
"Growth kinetics and growth mechanism of ultra-high mass density carbon nanotube forests on conductive Ti/Cu supports,"
ACS Appl. Mater. Interfaces 6 (17), 15440-15447 (2014).
DOI:10.1021/am504048h
A schematic of growth mechanism of ultra-high mass density carbon nanotube forests and the smallest patterning of carbon nanotube forests grown at 450 °C on conductive supports
A schematic of growth mechanism of ultra-high mass density carbon nanotube forests and the smallest patterning of the carbon nanotube forests grown at 450 °C on conductive supports
(20) J. Yang, S. Esconjauregui*, R. Xie, H. Sugime, T. Makaryan, L. D'Arsié, D.L.G. Arellano, S. Bhardwaj, C. Cepek, and J. Robertson,
"Effect of oxygen plasma alumina treatment on the growth of carbon nanotube forests,"
J. Phys. Chem. C 118 (32), 18683-18692 (2014).
DOI:10.1021/jp5022196
(19) T. Makaryan*, S. Esconjauregui, M. Goncalves, J. Yang, H. Sugime, D. Nille, P. Renganathan, P. Goldberg, and J. Robertson,
"Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,"
ACS Appl. Mater. Interfaces 6 (8), 5344-5349 (2014).
DOI:10.1021/am501863g
(18) F.B. Michaelis, R.S. Weatherup, B.C. Bayer, M.C.D. Bock, H. Sugime, S. Caneva, J. Robertson, J.J. Baumberg, and S. Hofmann*,
"Co-catalytic absorption layers for controlled laser-induced chemical vapor deposition of carbon nanotubes,"
ACS Appl. Mater. Interfaces 6 (6), 4025-4032 (2014).
DOI:10.1021/am405460r
(17) S. Esconjauregui*, S. Bhardwaj, J. Yang, C. Castellarin-Cudia, R. Xie, L. D'Arsié, T. Makaryan, H. Sugime, S.E. Fernandez, C. Cepek, and J. Robertson,
"Carbon nanotube growth on conductors: influence of the support structure and catalyst thickness,"
Carbon 73, 13-24 (2014).
DOI:10.1016/j.carbon.2014.02.026
(16) H. Tornatzky, D. Hardeman, S. Esconjauregui*, L. D'Arsié, R. Xie, H. Sugime, J. Yang, T. Makaryan, C. Thomsen, and J. Robertson,
"Evaluation of bimetallic catalysts for the growth of carbon nanotube forests,"
Phys. Status Solidi B 250 (12), 2605-2610 (2013).
DOI:10.1002/pssb.201300143
(15) H. Sugime*, S. Esconjauregui, J. Yang, L. D'Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, and J. Robertson,
"Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports,"
Appl. Phys. Lett. 103 (7), 073116 (2013).
DOI:10.1063/1.4818619
Press release by American Institute of Physics
Carbon nanotube forest grown at 450 °C on conductive supports with the highest mass density (1.6 g cm<sup>-3</sup>)
Carbon nanotube forest grown at 450 °C on conductive supports with the highest mass density (1.6 g cm-3)
(14) H. Sugime and S. Noda*,
"Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol,"
Carbon 50 (8), 2953-2960 (2012).
DOI:10.1016/j.carbon.2012.02.065
(13) D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays,"
Carbon 50 (4), 1538-1545 (2012).
DOI:10.1016/j.carbon.2011.11.032
(12) Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Tailoring the morphology of carbon nanotube assemblies using microgradients in the catalyst thickness,"
Jpn. J. Appl. Phys. 50 (9), 095101-1-7 (2011).
DOI:10.1143/JJAP.50.095101
(11) D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor,"
Carbon 49 (6), 1972-1979 (2011).
DOI:10.1016/j.carbon.2011.01.022
(10) H. Sugime and S. Noda*,
"Millimeter-tall single-walled carbon nanotube forests growing from ethanol,"
Carbon 48 (8), 2203-2211 (2010).
DOI:10.1016/j.carbon.2010.02.024
(9) S. Noda*, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori,
"A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates,"
Jpn. J. Appl. Phys. 49 (2), 02BA02 (2010).
DOI:10.1143/JJAP.49.02BA02
(8) Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Efficient field emission from triode-type 1D arrays of carbon nanotubes,"
Nanotechnology 20 (47), 475707-1-7 (2009).
DOI:10.1088/0957-4484/20/47/475707
(7) T.W.H. Oates, H. Sugime, and S. Noda*,
"Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films,"
J. Phys. Chem. C 113 (12), 4820-4828 (2009).
DOI:10.1021/jp8097654
(6) H. Sugime, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests,"
Carbon 47 (1), 234-241 (2009).
DOI:10.1016/j.carbon.2008.10.001
(5) Y. Shiratori, H. Sugime, and S. Noda*,
"Combinatorial evaluation for field emission properties of carbon nanotubes,"
J. Phys. Chem. C 112 (46), 17974-17982 (2008).
DOI:10.1021/jp807078h
(4) K. Hasegawa, S. Noda*, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi,
"Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests,"
J. Nanosci. Nanotechnol. 8 (11), 6123-6128 (2008).
DOI:10.1166/jnn.2008.SW17
(3) Y. Shiratori, K. Furuichi, S. Noda*, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Field emission properties of single-walled carbon nanotubes with a variety of emitter-morphologies,"
Jpn. J. Appl. Phys. 47 (6), 4780-4787 (2008).
DOI:10.1143/JJAP.47.4780
(2) S. Noda*, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support,"
Jpn. J. Appl. Phys. 46 (17), L399-L401 (2007). (Express Letter)
DOI:10.1143/JJAP.46.L399
(1) S. Noda*, H. Sugime, T. Osawa, Y. Tsuji, S. Chiashi, Y. Murakami, and S. Maruyama,
"A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes,"
Carbon 44 (8), 1414-1419 (2006).
DOI:10.1016/j.carbon.2005.11.02
 
 
© Copyright - Sugime group. All Rights Reserved.