応用物理化学研究室
多田・杉目グループ
 
 

PAGE TOP

論 文
2023
(1) T. Soejima*, H. Inoue, K. Egashira, Y. Yan, H. Tada*,
"Facile synthesis of single-crystalline MnO2 nanowire arrays with high photothermal catalytic activity,"
Chem. Commun. 59, 1449-1452 (2023).
DOI:10.1039/D2CC06241K
2022
(8) H. Tada*, S. Naya, H. Sugime,
"Near infrared light-to-heat conversion for liquid-phase oxidation reactions by antimony-doped tin oxide nanocrystals,"
ChemPhysChem e202201653 (2022).
DOI:10.1002/cphc.202200696
(7) S. Naya, A. Akita, Y. Morita, M. Fujishima, H. Tada*,
"Crystallographic interface control of the plasmonic photocatalyst consisting of gold nanoparticles and titanium(IV) oxide,"
Chem. Sci. 13, 12340-12347 (2022).
DOI:10.1039/D2SC03549A
(6) H. Tada*, S. Naya,
"Antimony-doped tin oxide catalysts for green and sustainable chemistry,"
J. Phys. Chem. C 126 (32), 13539-13547 (2022).
DOI:10.1021/acs.jpcc.2c03648
(5) H. Inoue, S. Naya, A. Akita, H. Sugime, H. Tada*,
"Photothermal catalytic oxidation of cinnamyl alcohol with hydrogen peroxide by gold nanoparticle/antimony-doped tin oxide nanocrystals,"
Chem. Eur. J. 28 (46), e202201653 (2022). (Cover Feature)
DOI:10.1002/chem.202201653
   
(4) H. Suzuki, J. Yamauchi, S. Naya, H. Sugime, H. Tada*,
"Noble metal-free inorganic photocatalyst consisting of antimony-doped tin oxide nanorod and titanium oxide for two-electron oxygen reduction reaction,"
ChemPhysChem 23 (15), e202200029 (2022).
DOI:10.1002/cphc.202200029
(3) S. Naya, H. Suzuki, H. Kobayashi, H. Tada*,
"Highly active and renewable catalytic electrodes for two-electron oxygen reduction reaction,"
Langmuir 38 (15), 4785-4792 (2022).
DOI:10.1021/acs.langmuir.2c00659
(2) H. Tada*,
"Rational design for gold nanoparticle-based plasmonic catalysts and electrodes for water oxidation towards the artificial photosynthesis,"
Dalton Trans. 51, 3383-3393 (2022).
DOI:10.1039/D1DT04020K
(1) R. Kojima, B. Ohtani*, H. Tada*,
"Photocatalytic activity of radial rutile titanium(IV) oxide microspheres for aerobic oxidation of organics,"
ChemPhysChem 23 (3), e202100793 (2022). (Front Cover)
DOI:10.1002/cphc.202100793
   
2021
(11) A. Akita, R. Kojima, H. Sugime, H. Tada*,
"Switching of electron transport direction from the long axis to short axis in radial SnO2(head)-rutile TiO2 nanorod(tail) heteromesocrystal photocatalyst,"
J. Phys. Chem. Lett. 12, 11717-11722 (2021).
DOI:10.1021/acs.jpclett.1c03360
(10) K. Kurokawa, H. Sugime, S. Naya, H. Tada*,
"Thermocatalytic activity of gold truncated nanopyramids on strontium titanate nanocube,"
Chem. Lett. 50 (12), 1997-2000 (2021).
DOI:10.1246/cl.210544
(9) S. Naya, H. Tada*,
"Photocatalysis of Ag nanoparticle-incorporated AgI formed in the pores of mesoporous TiO2 film,"
Chem. Lett. 50 (11), 1872-1874 (2021).
DOI:10.1246/cl.210457
(8) K. Kurokawa, M. Fujishima, S. Naya, H. Tada*,
"Bottom-up formation of gold truncated pyramids smaller than 10 nm on SrTiO3 nanocubes: An application to plasmonic water oxidation,"
Chem. Commun. 57, 7232-7235 (2021). (Inside front cover)
DOI:10.1039/D1CC02813H
   
(7) T. Kunimoto, S. Naya, H. Tada*,
"Hydrogen peroxide production from oxygen and water by two-electrode electrolytic cell using a gold nanoparticle-loaded fluorine-doped tin oxide cathode,"
Chem. Lett. 50 (8), 1589-1591 (2021).
DOI:10.1246/cl.210269
(6) S. Naya, T. Kunimoto, H. Tada*,
"A photothermal catalyst consisting of manganese oxide clusters and antimony-doped tin oxide nanocrystal: Application to environmental purification,"
Chem. Lett. 50 (7), 1372-1374 (2021).
DOI:10.1246/cl.210188
(5) A. Akita, S. Sugita, S. Naya, H. Tada*,
"A heteromesocrystal photocatalyst consisting of SnO2(head)-TiO2(tail) nanorod hybrids,"
Catal. Commun. 154, 106301 (2021).
DOI:10.1016/j.catcom.2021.106301
(4) S. Naya, H. Yoshioka, H. Tada*,
"Ammonium ion-promoted electrochemical production of synthetic gas from water and carbon dioxide on a fluorine-doped tin oxide electrode,"
Chem. Commun. 57, 1438-1441 (2021). (Back cover)
DOI:10.1039/D0CC08040C
   
(3) A. Akita, M. Fujishima, H. Tada*,
"Optical hot spot generation by the plasmonic coupling of Au nanoparticles in the nanospaces of mesoporous titanium(IV) oxide,"
Langmuir 37, 1838-1842 (2021).
DOI:10.1021/acs.langmuir.0c03184
(2) H. Tada*, S. Naya,
"Atomic level interface control of SnO2-TiO2 nanohybrids for the photocatalytic activity enhancement,"
Catalysts 11, 205 (2021).
DOI:10.3390/catal11020205
(1) 多田弘明
"界面制御によるヘテロナノ構造光触媒の活性向上,"
C & I Commun 36 (1), 19-22 (2021).
2020
(13) S. Naya, H. Tada*,
"Au-Ag alloy nanoparticle-incorporated AgBr plasmonic photocatalyst,"
Sci. Rep. 10, 199721 (2020).
DOI:10.1038/s41598-020-77062-6
(12) H. Tada*, S. Naya, M. Fujishima,
"Nanohybrid crystals with heteroepitaxial junctions for solar-to-chemical transformations,"
J. Phys. Chem. C 124, 25657-25666 (2020).
DOI:10.1021/acs.jpcc.0c06593
(11) A. Akita, H. Kobayashi*, H. Tada*,
"Action of chloride ions as a habit modifier in the hydrothermal crystal growth of rutile TiO2 nanorod from SnO2 seed crystal,"
Chem. Phys. Lett. 761, 138003 (2020).
DOI:10.1016/j.cplett.2020.138003
(10) R. Takahashi, M. Fujishima, H. Tada, T. Soejima*,
"Symmetry breaking induced by growth kinetics: one-pot synthesis of janus Au-AgBr nanoparticles,"
ChemNanoMat 761, 138003 (2020).
DOI:10.1002/cnma.202000438
(9) H. Suzuki, K. Awa, S. Naya, H. Tada*,
"Heat treatment effect of a hybrid consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction on the photocatalytic activity,"
Catal. Commun. 147, 106148 (2020).
DOI:10.1016/j.catcom.2020.106148
(8) T. Kunimoto, S. Naya, H. Tada*,
"Copper oxide cluster surface modification-induced multiple electron oxygen reduction reaction on bismuth vanadate under visible-light irradiation,"
J. Electrochem. Soc. 167, 116523 (2020).
DOI:10.1149/1945-7111/aba642
(7) M. Nagamitsu, K. Awa, H. Tada*,
"Hydrogen peroxide synthesis from water and oxygen by a three-component nanohybrid photocatalyst consisting of Au particle-loaded rutile TiO2 and RuO2 with heteroepitaxial junction,"
Chem. Commun. 56, 8190-8193 (2020).
DOI:10.1039/D0CC03327H
(6) T. Niwa, S. Naya, H. Tada*,
"Low-temperature selective aerobic oxidation of cyclohexanol to cyclohexanone over n-type metal oxide-supported Au nanoparticles,"
Catal. Commun. 142, 106089 (2020).
DOI:10.1016/j.catcom.2020.106089
(5) S. Kawano, M. Fujishima, H. Tada*,
"Size effect of zinc oxide-supported gold nanoparticles on the photocatalytic activity for two-electron oxygen reduction reaction,"
Catal. Commun. 144, 106076 (2020).
DOI:10.1016/j.catcom.2020.106076
(4) S. Naya, Y. Shite, H. Tada*,
"Photothermal effect of antimony-doped tin oxide nanocrystals on the photocatalysis,"
Catal. Commun. 142, 106044 (2020).
DOI:10.1016/j.catcom.2020.106044
(3) S. Naya, Y. Shite, H. Tada*,
"Electrocatalytic Effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrode for water oxidation,"
J. Phys. Chem. C 124, 6103-6109 (2020).
DOI:10.1021/acs.jpcc.9b11207
(2) S. Naya, Y. Shite, H. Tada*,
"A three-component plasmonic photocatalyst consisting of gold nanoparticle and TiO2-SnO2 nanohybrid with heteroepitaxial junction: hydrogen peroxide synthesis,"
J. Phys. Chem. C 124, 7797-7802 (2020).
DOI:10.1021/acs.jpcc.9b11875
(1) S. Naya, Y. Shite, H. Tada*,
"Visible-light-driven hydrogen peroxide synthesis by a hybrid photocatalyst consisting of bismuth vanadate and bis(hexafluoroacetylacetonato)copper(II) complex,"
J. Phys. Chem. C 124, 3715-3721 (2020).
DOI:10.1021/acs.jpcc.9b11568
2019
(7) A. Akita, H. Tada*,
"Synthesis of 1D-anisotropic particles consisting of TiO2 nanorods and SnO2 with heteroepitaxial junctions and self-assembled 3D-microspheres,"
Langmuir 35(52), 17096-17102 (2019).
DOI:10.1021/acs.langmuir.9b03015
(6) H. Tada*,
"Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts,"
Nanoscale Adv. 1, 4238-4245 (2019).
DOI:10.1039/C9NA00431A
(5) S. Naya, M. Fujishima, H. Tada*,
"Synthesis of Au-Ag alloy nanoparticle-incorporated AgBr crystals,"
Catalysts 9(9), 745 (2019).
DOI:10.3390/catal9090745
(4) K. Awa, R. Akashi, A. Akita, S. Naya, H. Kobayashi, H. Tada*,
"Highly efficient and selective oxidation of ethanol to acetaldehyde by a hybrid photocatalyst consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction,"
ChemPhysChem 20(17), 2155-2161 (2019).
DOI:10.1002/cphc.201900632
(3) A. Akita, H. Kobayashi, H. Tada*,
"Ultrathin silicon oxide film-induced enhancement of charge separation and transport of nanostructured titanium(IV) oxide photoelectrode,"
ChemPhysChem 20(16), 2054-2059 (2019).
DOI:10.1002/cphc.201900462
(2) H. Tada*,
"Size, shape and interface control in gold nanoparticle-based plasmonic photocatalysts for solar-to-chemical transformations,"
Dalton Trans. 48, 6308-6313 (2019).
DOI:10.1039/C9DT00891H
(1) M. Teranishi, S. Naya, H. Tada*,
"Nanohybrid catalysts for efficient synthesis of hydrogen peroxide at ambient temperature and pressure,"
J. Phys. Chem. C 123(15), 9831-9837 (2019).
DOI:10.1021/acs.jpcc.9b00381
2018
(9) H. Tada*,
"Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion,"
MRS Commun. 8, 754-764 (2018).
DOI:10.1557/mrc.2018.137
(8) S. Naya, S. Miki, J. Yamauchi, M. Teranishi, H. Kobayashi, H. Tada*,
"Au(core)-Pt(shell) nanocatalysts with the shell thickness controlled at a monolayer level: Extremely high activity for hydrogen peroxide decomposition,"
J. Phys. Chem. C 122(40), 22953-22958 (2018).
DOI:10.1021/acs.jpcc.8b06214
(7) T. Onishi, M. Fujishima, H. Tada*,
"Solar-driven one-compartment hydrogen peroxide-photofuel cell using bismuth vanadate photoanode,"
ACS Omega. 3(9), 12099-12105 (2018).
DOI:10.1021/acsomega.8b01333
(6) M. Fujishima, T. Ikeda, R. Akashi, H. Tada*,
"In situ shape change of Au nanoparticles on TiO2 by CdS photodeposition: Its near-field enhancement effect on photoinduced electron injection from CdS to TiO2,"
ACS Omega. 3(6), 6104-6112 (2018).
DOI:10.1021/acsomega.8b00818
(5) T. Masuda, M. Fujishima, H. Tada*,
"Photo-effect on the electromotive force in two-compartment hydrogen peroxide-photofuel cell,"
Electrochem. Commun. 93, 31-34 (2018).
DOI:10.1016/j.elecom.2018.05.025
(4) S. Naya, H. Tada*,
"Dependence of the plasmonic activity of Au/TiO2 for the decomposition of 2-naphthol on the crystal form of TiO2 and Au particle size,"
J. Catal. 364, 328-333 (2018).
DOI:10.1016/j.jcat.2018.06.008
(3) 納谷 真一, 多田 弘明*,
"金ナノ粒子−半導体プラズモニック光触媒によるソーラー物質エネルギー変換:金粒子サイズ効果,"
色材協会誌 91(4), 122-127 (2018).
DOI:10.4011/shikizai.91.122
(2) A. Akita, T. Masuda, K. Fujiwara, M. Fujishima, H. Tada*,
"One-compartment hydrogen peroxide-photofuel cell using TiO2 photoanode and prussian blue cathode,"
J. Electrochem. Soc. 165, F300-F304 (2018).
DOI:10.1149/2.0591805jes
(1) S. Naya, T. Kume, R. Akashi, M. Fujishima, H. Tada*,
"Red-light-driven water splitting by Au(core)-CdS(shell) half-cut nanoegg with heteroepitaxial junction,"
J. Am. Chem. Soc. 140(4), 1251-1254 (2018).
DOI:10.1021/jacs.7b12972
 
 
© Copyright - Tada-Sugime group. All Rights Reserved.